Площадь треугольника

площадь треугольникаТреугольник – это геометрическая фигура, которая имеет три точки, не лежащие на одной прямой и трех отрезков, которые попарно соединяют данные точки. Точки треугольника принято называть его вершинами, а отрезки – его сторонами.Наш онлайн калькулятор всего за несколько секунд поможет вам вычислить площадь треугольника. Для этого вам необходимо ввести определенные данные, а именно длину его основания, которую обозначают латинской буквой «а» и высоту треугольника, которую обозначают латинской буквой «h». Вычисляется площадь треугольника по формуле:формула площади треугольника, калькулятор.что обозначает, что площадь треугольника равна произведению длины его основания и высоты поделенной на два.

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.

Как найти площадь треугольника, зная сторону и высоту

  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.

Как найти площадь треугольника, зная две стороны и угол между ними

  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.

Как найти площадь треугольника по формуле Герона

  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.

Как вычислить площадь треугольника, зная три стороны и радиус описанной окружности

  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

Как вычислить площадь треугольника, зная радиус вписанной окружности и полупериметр

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.

Как найти площадь прямоугольного треугольника

  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.

Как найти площадь равнобедренного треугольника

  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.

Как найти площадь равностороннего треугольника

  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Онлайн-калькулятор для расчета площади треугольника поможет Вам найти площадь треугольника несколькими способами в зависимости от известных данных. Наш калькулятор не просто рассчитает площадь треугольника, но и покажет подробное решение, которое будет показано под калькулятором. Поэтому данный калькулятор удобно использовать не только для быстрых расчетов, но и для проверки своих вычислений. С помощью данного калькулятора вы сможете найти площадь треугольника по следующим формулам: через основание и высоту, через две стороны и угол, по трем сторонам (формула Герона), через радиус вписанной окружности, через радиус описанной окружности.

Расчет площади треугольника. Рисунок.

Выберите способ расчета площади:

Рассчитать

Треугольник – это геометрическая фигура, которая образована тремя отрезками. Эти отрезки называются сторонами треугольниками, а точки соединения отрезков – вершинами треугольника. В зависимости от соотношения сторон треугольники бывают нескольких видов: равнобедренный треугольник (две стороный треугольника равны между собой, эти стороны называются боковыми сторонами, а третья сторона называется основанием треугольника), равносторонний треугольник (у треугольника все три стороны равны), прямоугольный треугольник (один угол треугольника прямой).

Как найти площадь треугольника?

Найти площадь треугольника очень просто, достаточно воспользоваться нашим калькулятором или рассчитать самостоятельно, воспользовавшись формулой площади треугольника. В зависимости от того, какие данные известны, для расчета площади треугольника использует несколько способов:

1) через основание и высоту

Формула площади треугольника. Расчет площади по высоте и основанию. a – основание треугольника, h – высота треугольника.

2) через две стороны и угол

Формула площади треугольника. Расчет площади по двум сторонам и углу. a, b – стороны треугольника, α – угол между сторонами.

3) По трем сторонам. Формула Герона.

Формула площади треугольника. Расчет площади с помощью формулы Герона. a, b, с – стороны треугольника, p – полупериметр треугольника.

4) Через радиус вписанной окружности.

Формула площади треугольника. Расчет площади через радиус вписанной окружности. a, b, с – стороны треугольника, p – полупериметр треугольника, r – радиус вписанной окружности.

5) Через радиус описанной окружности.

Формула площади треугольника. Расчет площади через радиус описанной окружности. a, b, с – стороны треугольника, R – радиус описанной окружности.

Вы всегда сможете проверить правильность расчета площади треугольника с помощью нашего калькулятора.

Задача нахождения площади треугольника довольно распространена не только в науке, но и в быту. Для вас мы разработали 21 калькулятор для нахождения площади любого треугольника — равнобедренного, равностороннего, прямоугольного или обыкновенного.

Площадь треугольника

Площадь треугольника через две стороны и угол между ними

Площадь треугольника через две стороны и угол между ними

{S= \dfrac{1}{2} \cdot a \cdot b \cdot sin (\alpha)}

Формула для нахождения площади треугольника через 2 стороны и угол:

{S= \dfrac{1}{2} \cdot a \cdot b \cdot sin (\alpha)}, где a, b — стороны треугольника, α — угол между ними.

Площадь треугольника через основание и высоту

Площадь треугольника через основание и высоту

{S= \dfrac{1}{2} \cdot a \cdot h}

Формула для нахождения площади треугольника через основание и высоту:

{S= \dfrac{1}{2} \cdot a \cdot h}, где a — основание треугольника, h — высота треугольника.

Площадь треугольника через радиус описанной окружности и 3 стороны

Площадь треугольника через радиус описанной окружности и 3 стороны

{S= \dfrac{a \cdot b \cdot c}{4 \cdot R}}

Формула для нахождения площади треугольника через описанную окружность и стороны:

{S= \dfrac{a \cdot b \cdot c}{4 \cdot R}}, где a, b, c — стороны треугольника, R — радиус описанной окружности.

Площадь треугольника через радиус вписанной окружности и 3 стороны

Площадь треугольника через радиус вписанной окружности и 3 стороны

{S= r \cdot \dfrac{a + b + c}{2}}

Формула для нахождения площади треугольника через вписанную окружность и стороны:

{S= r \cdot \dfrac{a + b + c}{2}}, где a, b, c — стороны треугольника, r — радиус вписанной окружности.

Формулу можно переписать иначе, если учитывать, что {\dfrac{a + b + c}{2}} — полупериметр треугольника. В этом случае формула будет выглядеть так: S = {r \cdot p}, где p — полупериметр треугольника.

Площадь треугольника через сторону и два прилежащих угла

Площадь треугольника через сторону и два прилежащих угла

{S= \dfrac{a^2}{2} \cdot \dfrac{sin(\alpha) \cdot sin(\beta)}{sin(\gamma)}}{\gamma = 180 - (\alpha + \beta)}

Формула для нахождения площади треугольника через сторону и 2 прилежащих угла:

{S= \dfrac{a^2}{2} \cdot \dfrac{sin(\alpha) \cdot sin(\beta)}{sin(\gamma)}}, где a — сторона треугольника, α и β — прилежащие углы, γ — противолежащий угол, который можно найти по формуле:

{\gamma = 180 — (\alpha + \beta)}

Площадь треугольника по формуле Герона

Площадь треугольника по формуле Герона

{S= \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}}{p= \dfrac{a+b+c}{2}}

Формула для нахождения площади треугольника по формуле Герона (если известны 3 стороны):

{S= \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}}, где a, b, c — стороны треугольника, p — полупериметр треугольника, который можно найти по формуле p = {\dfrac{a + b + c}{2}}

Площадь прямоугольного треугольника

Площадь прямоугольного треугольника через 2 стороны

Площадь прямоугольного треугольника через 2 стороны

{S= \dfrac{1}{2} \cdot a \cdot b}

Формула для нахождения площади прямоугольного треугольника по двум сторонам:

{S= \dfrac{1}{2} \cdot a \cdot b}, где a, b — стороны треугольника.

Площадь прямоугольного треугольника через гипотенузу и острый угол

Площадь прямоугольного треугольника через гипотенузу и острый угол

{S= \dfrac{1}{4} \cdot c^2 \cdot sin (2 \alpha)}

Формула для нахождения площади прямоугольного треугольника по гипотенузе и острому углу:

{S= \dfrac{1}{4} \cdot c^2 \cdot sin (2 \alpha)}, где c — гипотенуза треугольника, α — любой из прилегающих острых углов.

Площадь прямоугольного треугольника через катет и прилежащий угол

Площадь прямоугольного треугольника через катет и прилежащий угол

{S= \dfrac{1}{2} \cdot a^2 \cdot tg (\alpha)}

Формула для нахождения площади прямоугольного треугольника по катету и прилежащему углу:

{S= \dfrac{1}{2} \cdot a^2 \cdot tg (\alpha)}, где a — катет треугольника, α — прилежащий угол.

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

{S= r \cdot (r + c)}

Формула для нахождения площади прямоугольного треугольника по радиусу вписанной окружности и гипотенузе:

{S= r \cdot (r+c)}, где c — гипотенуза треугольника, r — радиус вписанной окружности.

Площадь прямоугольного треугольника через вписанную окружность

Площадь прямоугольного треугольника через вписанную окружность

{S= c_{1} \cdot c_{2}}

Формула для нахождения площади прямоугольного треугольника по вписанной окружности:

{S= c_{1} \cdot c_{2}}, где c1 и c2 — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

Площадь прямоугольного треугольника по формуле Герона

{S= (p-a) \cdot (p-b)}{p= \dfrac{a+b+c}{2}}

Формула Герона для прямоугольного треугольника выглядит так:

{S= (p-a) \cdot (p-b)}, где a, b — катеты треугольника, p — полупериметр прямоугольного треугольника, который рассчитывается по формуле p = {\dfrac{a + b + c}{2}}

Площадь равнобедренного треугольника

Площадь равнобедренного треугольника через основание и сторону

Площадь равнобедренного треугольника через основание и сторону

{S=\dfrac{b}{4} \sqrt{4 \cdot a^2-b^2}}

Формула площади равнобедренного треугольника через основание и сторону:

{S=\dfrac{b}{4} \sqrt{4 \cdot a^2-b^2}}, где a — боковая сторона треугольника, b — основание треугольника

Площадь равнобедренного треугольника через основание и угол

Площадь равнобедренного треугольника через основание и угол

{S=\dfrac{1}{2} \cdot a \cdot b \cdot sin( \alpha)}

Формула площади равнобедренного треугольника через основание и угол:

{S=\dfrac{1}{2} \cdot a \cdot b \cdot sin( \alpha)}, где a — боковая сторона треугольника, b — основание треугольника, α — угол между основанием и стороной.

Площадь равнобедренного треугольника через основание и высоту

Площадь равнобедренного треугольника через основание и высоту

{S=\dfrac{1}{2} \cdot b \cdot h}

Формула площади равнобедренного треугольника через основание и высоту:

{S=\dfrac{1}{2} \cdot b \cdot h}, где b — основание треугольника, h — высота, проведенная к основанию.

Площадь равнобедренного треугольника через боковые стороны и угол между ними

Площадь равнобедренного треугольника через боковые стороны и угол между ними

{S=\dfrac{1}{2} \cdot a^2 \cdot sin(\alpha)}

Формула площади равнобедренного треугольника через боковые стороны и угол между ними:

{S=\dfrac{1}{2} \cdot a^2 \cdot sin(\alpha)}, где a — боковая сторона треугольника, α — угол между боковыми сторонами.

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

{S=\dfrac{b^2}{4 \cdot tg \dfrac{\alpha}{2}}}

Формула площади равнобедренного треугольника через основание и угол между боковыми сторонами:

{S=\dfrac{b^2}{4 \cdot tg \dfrac{\alpha}{2}}}, где b — основание треугольника, α — угол между боковыми сторонами.

Площадь равностороннего треугольника

Площадь равностороннего треугольника через радиус описанной окружности

Площадь равностороннего треугольника через радиус описанной окружности

{S= \dfrac{3 \sqrt{3} \cdot R^2}{4}}

Формула площади равностороннего треугольника через радиус описанной окружности:

{S= \dfrac{3 \sqrt{3} \cdot R^2}{4}}, где R — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

Площадь равностороннего треугольника через радиус вписанной окружности

{S= 3 \sqrt{3} \cdot r^2}

Формула площади равностороннего треугольника через радиус вписанной окружности:

{S= 3 \sqrt{3} \cdot r^2}, где r — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через сторону

{S= \dfrac{\sqrt{3} \cdot a^2}{4}}

Формула площади равностороннего треугольника через сторону:

{S= \dfrac{\sqrt{3} \cdot a^2}{4}}, где a — сторона треугольника.

Площадь равностороннего треугольника через высоту

Площадь равностороннего треугольника через высоту

{S= \dfrac{h^2}{\sqrt{3}}}

Формула площади равностороннего треугольника через высоту:

{S= \dfrac{h^2}{\sqrt{3}}}, где h — высота треугольника.

Просмотров страницы: 327423

Зависит от того, какой треугольник.

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

формула площади прямоугольного треугольника

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Формула площади равнобедренного треугольника

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Формула площади равностороннего треугольника

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Формула площади треугольника по стороне и высоте

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Формула площади треугольника по сторонам и синусу угла

Если известны длины трех сторон

Делайте так:

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Площадь треугольника по трем сторонам

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

По сторонам и радиусу описанной окружности

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

По сторонам и вписанной окружности

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

Основные понятия

Треугольник — это геометрическая фигура, которая получилось из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

а

Площадь — это численная характеристика, которая дает нам информацию о размере плоскости, ограниченной замкнутой геометрической фигурой.

Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения

  • квадратный миллиметр (мм2);
  • квадратный сантиметр (см2);
  • квадратный дециметр (дм2);
  • квадратный метр (м2);
  • квадратный километр (км2);
  • гектар (га).

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Общая формула

1. Площадь треугольника через две стороны и угол между ними.

S = 0,5 * a * b⋅sin(α) , где a, b — стороны, α — угол между ними.

треугольник с углом в основании

2. Площадь треугольника через основание и высоту.

S = 0,5 * a * h, где a — основание, h — высота.

треугольник с отмеченной высотой

3. Площадь треугольника через описанную окружность и стороны.

S = (a * b * c) : (4 * R), где a, b, c — стороны, R — радиус описанной окружности.

радиус описанной окружности

4. Площадь треугольника через вписанную окружность и стороны.

S = r * (a + b + c) : 2, где a, b, c — стороны, r — радиус вписанной окружности.

 радиус вписанной окружности

Если учитывать, что (a + b + c) : 2 — это способ поиска полупериметра. Тогда формулу можно записать следующим образом:

S = r * p, где p — полупериметр.

5. Площадь треугольника по стороне и двум прилежащим углам.

S = a2 : 2 * (sin(α)⋅sin(β)) : sin(180 — (α + β)), где a — сторона, α и β — прилежащие углы, γ — противолежащий угол.

треугольник с двумя отмеченными углами

6. Формула Герона для вычисления площади треугольника.

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

S = √ p * (p − a) * (p − b) * (p − c)​, где a, b, c — стороны, p — полупериметр, который можно найти по формуле: p = (a + b + c) : 2

треугольник со сторонами a, b, c

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам.

S = 0,5 * a * b, где a, b — стороны.

треугольник с углом 90°

Площадь треугольника по гипотенузе и острому углу.

S = 0,25 * c2 * sin(2α), где c — гипотенуза, α — любой из прилегающих острых углов.

Площадь треугольника по гипотенузе и острому углу

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу.

S = 0,5 * a2 * tg(α), где a — катет, α — прилежащий угол.

Площадь прямоугольного треугольника по катету и прилежащему углу

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и по радиусу вписанной окружности.

S = r * (r + c), где c — гипотенуза, r — радиус вписанной окружности.

радиус вписанной окружности в треугольник

Площадь треугольника вписанного в окружность.

S = c1 * c2, где c1, c2 — части гипотенузы.

Площадь треугольника вписанного в окружность

Площадь прямого треугольника по формуле Герона.

S = (p − a) * (p − b), где a, b — катеты, p — полупериметр, который рассчитывается по формуле p = (a + b + c) : 2.

Площадь прямого треугольника по формуле Герона

Для равнобедренного треугольника

Поиск площади через основание и сторону.

S = b : 4 * √ 4 * a2 − b2, где a — боковая сторона, b — основание.

площадь через основание и сторону

Вычисление площади через основание и угол.

S = 0,5 * a * b * sin(α), где a — боковая сторона, b — основание, α — угол между основанием и стороной.

площадь через основание и угол

Вычисление площади через основание и высоту.

S = 0,5 * b * h, где b — основание, h — высота, проведенная к основанию.

площадь через основание и высоту

Поиск площади через боковые стороны и угол между ними.

S = 0,5 * a2 * sin(α), где a — боковая сторона, α — угол между боковыми сторонами.

площадь через боковые стороны и угол между ними

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами.

S = b2 : (4 * tgα/2), где b — основание, α — угол между боковыми сторонами.

площадь через основание и угол между боковыми сторонами

Площадь равностороннего треугольника через радиус описанной окружности.

S = (3 * √ 3 * R2) : 4, где R — радиус описанной окружности.

радиус описанной окружности равностороннего треугольника

Площадь равностороннего треугольника через радиус вписанной окружности.

S = 3 * √ 3 * r2, где r — радиус вписанной окружности.

радиус вписанной окружности равностороннего треугольника

Площадь равностороннего треугольника через сторону.

S = (√ 3 * a2) : 4, где a — сторона.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту.

S = h2 : √ 3, где h — высота.

Площадь равностороннего треугольника через высоту

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

таблица формул для геометрических фигур

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Лето  —  прекрасное время, чтобы заниматься ей с удовольствием, в комфортном темпе, без контрольных и оценок за четверть, валяясь дома на полу или за городом на травке.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой. Наши преподаватели понятно объяснят что угодно  —  от дробей до синусов —  и ответят на вопросы, которые бывает неловко задать перед всем классом.

Добавить комментарий